Random walks and expansion in \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\).
From MaRDI portal
Publication:931800
DOI10.1016/j.crma.2008.04.006zbMath1150.20035OpenAlexW1556156972MaRDI QIDQ931800
Jean Bourgain, Alexander Gamburd
Publication date: 26 June 2008
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2008.04.006
Sums of independent random variables; random walks (60G50) Linear algebraic groups over finite fields (20G40) Generators, relations, and presentations of groups (20F05) Graphs and abstract algebra (groups, rings, fields, etc.) (05C25)
Related Items (2)
Strong approximation in random towers of graphs. ⋮ Arithmetic and dynamics on varieties of Markoff type
Cites Work
- Unnamed Item
- Expansion and random walks in \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\). II.
- Affine linear sieve, expanders, and sum-product
- Expansion and random walks in \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\). I.
- Bounds for multiplicities of automorphic representations
- Growth and generation in \(\text{SL}_2(\mathbb{Z}/p\mathbb{Z})\).
- Uniform expansion bounds for Cayley graphs of \(\text{SL}_2(\mathbb F_p)\).
- Sieving and expanders
- Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire
- Heegaard genus and property τ for hyperbolic 3-manifolds
This page was built for publication: Random walks and expansion in \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\).