The global and superlinear convergence of a new nonmonotone MBFGS algorithm on convex objective functions
From MaRDI portal
Publication:939545
DOI10.1016/j.cam.2007.08.017zbMath1152.65068OpenAlexW1969738095MaRDI QIDQ939545
Liying Liu, Shengwei Yao, Zeng-xin Wei
Publication date: 22 August 2008
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.cam.2007.08.017
global convergencenumerical examplessuperlinear convergencequasi-Newton methodBroyden-Fletcher-Goldfarb-Shanno (BFGS) formulaGLL line search
Numerical mathematical programming methods (65K05) Nonlinear programming (90C30) Methods of quasi-Newton type (90C53)
Related Items
A Modified Non-Monotone BFGS Method for Non-Convex Unconstrained Optimization ⋮ The convergence of a new modified BFGS method without line searches for unconstrained optimization or complexity systems ⋮ A globally convergent BFGS method with nonmonotone line search for non-convex minimization ⋮ Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Über die globale Konvergenz von Variable-Metrik-Verfahren mit nicht- exakter Schrittweitenbestimmung
- Global convergence analysis of a new nonmonotone BFGS algorithm on convex objective functions
- The superlinear convergence of a modified BFGS-type method for unconstrained optimization
- Local convergence analysis for partitioned quasi-Newton updates
- Global Convergence of a Cass of Quasi-Newton Methods on Convex Problems
- Quasi-Newton Algorithms with Updates from the Preconvex Part of Broyden's Family
- Testing Unconstrained Optimization Software
- Quasi-Newton Methods, Motivation and Theory
- A Nonmonotone Line Search Technique for Newton’s Method
- Global convergece of the bfgs algorithm with nonmonotone linesearch∗∗this work is supported by national natural science foundation$ef:
- On the Convergence of the Variable Metric Algorithm