On the Diophantine system \(a^2+ b^2 = c^3\) and \(a^x + b^y = c^z\) for \(b\) is an odd prime
From MaRDI portal
Publication:943531
DOI10.1007/s10114-007-6140-xzbMath1218.11037OpenAlexW2170973039MaRDI QIDQ943531
Publication date: 9 September 2008
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10114-007-6140-x
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The diophantine equation \(a^ x+b^ y=c^ z\)
- A note on the diophantine equation \((m^3-3m)^x+(3m^2-1)^y=(m^2+1)^z\)
- Zur Approximation algebraischer Zahlen. I: Über den grössten Primteiler binärer Formen
- Some exponential diophantine equations. I: The equation \(D_1x^2 - D_2y^2 = \lambda k^z\)
- Existence of primitive divisors of Lucas and Lehmer numbers
- A note on the Diophantine equation $a^x + b^y = c^z$
- Primitive Divisors of Lucas and Lehmer Sequences
- On the Equations zm = F (x, y ) and Axp + Byq = Czr
This page was built for publication: On the Diophantine system \(a^2+ b^2 = c^3\) and \(a^x + b^y = c^z\) for \(b\) is an odd prime