An interpolation theorem on cycle spaces for functions arising as integrals of \(\overline{\partial}\)-closed forms
DOI10.2977/PRIMS/1201012373zbMath1154.32002OpenAlexW2167935509MaRDI QIDQ945581
Publication date: 12 September 2008
Published in: Publications of the Research Institute for Mathematical Sciences, Kyoto University (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2977/prims/1201012373
\(q\)-complete manifold\(L^2\) method for \(\overline\partial\)compact cyclesintegration of cohomology classes
Parametrization (Chow and Hilbert schemes) (14C05) (q)-convexity, (q)-concavity (32F10) Integration on analytic sets and spaces, currents (32C30)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Projectivity of the space of divisors on a normal compact complex space
- Carleman estimates for the Laplace-Beltrami equation on complex manifolds
- Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné
- Théorèmes de finitude pour la cohomologie des espaces complexes
- Convexité de l'espace des cycles
- Holomorphic functions on the cycle space: The intersection méthod
This page was built for publication: An interpolation theorem on cycle spaces for functions arising as integrals of \(\overline{\partial}\)-closed forms