A generalization of Szász-Mirakyan operators based on \(q\)-integers

From MaRDI portal
Publication:947879

DOI10.1016/j.mcm.2007.06.018zbMath1144.41303OpenAlexW2075317942WikidataQ126220289 ScholiaQ126220289MaRDI QIDQ947879

Ali Aral

Publication date: 8 October 2008

Published in: Mathematical and Computer Modelling (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/j.mcm.2007.06.018




Related Items (52)

Approximation degree of Durrmeyer-Bézier type operatorsDunkl analogue of Szasz operatorsRate of convergence of Szász-beta operators based on \(q\)-integersOn a \(q\)-analogue of Stancu operatorsQuantitative \(q\)-Voronovskaya and \(q\)-Grüss-Voronovskaya-type results for \(q\)-Szász operatorsBivariate positive operators in polynomial weighted spacesApproximation by Baskakov-Durrmeyer-Stancu operators based on \(q\)-integersApproximation by a kind of complex modified \(q\)-Durrmeyer type operators in compact disksJain-Baskakov operators and its different generalizationVoronovskaja Type Approximation Theorem for q-Szasz–Schurer OperatorsApproximation by the \(q\)-Szász-Mirakjan operatorsApproximation by Szász-Mirakyan-Baskakov-Stancu operatorsSome approximation properties by \(q\)-Szász-Mirakyan-Baskakov-Stancu operatorsApproximation of complex q-Baskakov-Schurer-Szasz-Stancu operators in compact disksOn \(q\)-Baskakov-Mastroianni operators\(q\)-difference operator and its \(q\)-cohyponormalityIbragimov-Gadjiev operators based on \(q\)-integersShape-preserving and convergence properties for the \(q\)-Szász-Mirakjan operators for fixed \(q \in(0,1)\)Convergence estimates of certain q-Beta-Szász type operatorsGBS operators of Bernstein-Schurer-Kantorovich type based on \(q\)-integersCertain generalized \(q\)-operatorsOn approximation properties of Baskakov-Schurer-Szász operatorsKing type modification of q-Bernstein-Schurer operatorsOn a modification of \((p,q)\)-Szász-Mirakyan operatorsGeneralized q-Baskakov operatorsOn certain \(q\)-analogue of Szász Kantorovich operatorsOn certain \(q\)-Phillips operatorsGeneralized Szász Durrmeyer operatorsApproximation by Fuzzy $(p,q)$-Bernstein-Chlodowsky OperatorsImproved approximation and error estimations by King type \((p, q)\)-Szász-Mirakjan Kantorovich operatorsGeneralized Picard singular integralsWeighted statistical approximation by Kantorovich type \(q\)-Szász-Mirakjan operatorsOn \(q\)-Szász-Durrmeyer operatorsOn \(q\)-parametric Szász-Mirakjan operatorsApproximation properties of generalized Szász-type operatorsGeneralized Szász-Mirakjan type operators via \(q\)-calculus and approximation propertiesOn a Kantorovich variant of \((p, q)\)-Szász-Mirakjan operatorsApproximation by Durrmeyer type Jakimoski-Leviatan operatorsUnnamed Item\((p , q)\)-generalization of Szász-Mirakjan operators and their approximation properties\(q\)-Szász-Mirakyan-Kantorovich operators of functions of two variables in polynomial weighted spacesOn statistical approximation of a general class of positive linear operators extended in \(q\)-calculusQuantitative Dunkl analogue of Szász-Mirakyan operatorsOn Approximation Properties of Szász–Mirakyan OperatorsOn Pointwise Convergence ofq-Bernstein Operators and Theirq-DerivativesOn Approximation Properties of Two Variables of Modified Kantorovich-Type OperatorsA Note On Statistical Approximation Properties of Complex q-Szász- Mirakjan OperatorsA new type of q-Szász-Mirakjan operatorsOn approximation properties of Baskakov-Schurer-Szász-Stancu operators based on q-integersSzász-Baskakov type operators based on \(q\)-integersApproximation properties of the Riemann-Liouville fractional integral type Szász-Mirakyan-Kantorovich operatorsDunkl generalization of Szász operators via \(q\)-calculus



Cites Work


This page was built for publication: A generalization of Szász-Mirakyan operators based on \(q\)-integers