A note on dyadic Hausdorff capacities

From MaRDI portal
Publication:950535

DOI10.1016/j.bulsci.2007.06.005zbMath1154.31004OpenAlexW1980864974MaRDI QIDQ950535

Wen Yuan, Da Chun Yang

Publication date: 30 October 2008

Published in: Bulletin des Sciences Mathématiques (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/j.bulsci.2007.06.005




Related Items (24)

Hardy-Hausdorff spaces on the Heisenberg groupRiesz potentials of Hardy-Hausdorff spaces and \(Q\)-type spacesHausdorff content and the Hardy-Littlewood maximal operator on metric measure spacesAbstract dyadic cubes, maximal operators and Hausdorff contentFunctional capacities on the Grushin space \({\mathbb {G}}^n_\alpha \)Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local meansDual of the Choquet spaces with general Hausdorff contentThe spherical maximal function on Choquet spacesA decomposition by non-negative functions in the Sobolev Space W^{k,1}Fourier multipliers on Triebel-Lizorkin-type spacesOn Choquet integrals and Poincaré-Sobolev inequalitiesPreduals of quadratic Campanato spaces associated to operators with heat kernel boundsThe logarithmic Sobolev capacityA new class of function spaces connecting Triebel--Lizorkin spaces and \(Q\) spacesMorrey spaces in harmonic analysisNew characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and waveletsNew Besov-type spaces and Triebel-Lizorkin-type spaces including \(Q\) spacesFunction spaces of Besov-type and Triebel-Lizorkin-type -- a surveyHausdorff Besov-type and Triebel-Lizorkin-type spaces and their applicationsDecompositions of Besov-Hausdorff and Triebel-Lizorkin-Hausdorff spaces and their applicationsRestriction of heat equation with Newton-Sobolev data on metric measure spaceGeneralized Poincaré embeddings and weighted Hardy operator on spacesMorrey-type space and its Köthe dual spaceGeneralized Hausdorff capacities and their applications



Cites Work


This page was built for publication: A note on dyadic Hausdorff capacities