The stationary Navier-Stokes equations in 3D exterior domains. An approach in anisotropically weighted \(L^q\) spaces
DOI10.1016/j.jde.2008.07.014zbMath1184.35246OpenAlexW2073735564MaRDI QIDQ952523
Publication date: 12 November 2008
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jde.2008.07.014
weighted spacesfluid mechanicsstationary Navier-Stokes equations\(\mathcal D\)-solutions\(\mathcal{PR}\)-solutions
Navier-Stokes equations for incompressible viscous fluids (76D05) Navier-Stokes equations (35Q30) Existence, uniqueness, and regularity theory for incompressible viscous fluids (76D03)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A variational approach in weighted Sobolev spaces to the operator \(- \Delta +\partial /\partial x_ 1\) in exterior domains of \({\mathbb{R}}^ 3\)
- The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted spaces
- Anisotropic weighted \(L^{p}\) spaces for the stationary exterior 3D-problem of Oseen
- Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique
- On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems
- Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace
- Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in \(\mathbb{R}^{3}\)
- ON STATIONARY SOLUTIONS OF THE PROBLEM OF FLOW PAST A BODY OF A VISCOUS INCOMPRESSIBLE FLUID
- Anisotropically weighted Poincaré‐type inequalities; Application to the Oseen problem
- Estimates of Oseen kernels in weighted \(L^p\) spaces
This page was built for publication: The stationary Navier-Stokes equations in 3D exterior domains. An approach in anisotropically weighted \(L^q\) spaces