An arithmetic Riemann-Roch theorem in higher degrees
From MaRDI portal
Publication:954822
DOI10.5802/aif.2410zbMath1152.14023arXiv0802.1400OpenAlexW2140857453MaRDI QIDQ954822
Henri A. Gillet, Damien Roessler, Christophe Soule
Publication date: 18 November 2008
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0802.1400
Arakelov geometryarithmetic intersection theoryanalytic torsion formGrothendieck-Riemann-Roch theorm
Riemann-Roch theorems (14C40) Determinants and determinant bundles, analytic torsion (58J52) Arithmetic varieties and schemes; Arakelov theory; heights (14G40)
Related Items
The direct image of a flat fibration with complex fibers, Arakelov motivic cohomology I, Arakelov motivic cohomology II, Analytic torsion forms for fibrations by projective curves, Hermitian structures on the derived category of coherent sheaves, The asymptotics of the holomorphic torsion forms, The asymptotics of the holomorphic analytic torsion forms, Differential \(K\)-theory and localization formula for \(\eta \)-invariants, The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms, An index theorem in differential \(K\)-theory, On the full asymptotics of analytic torsion, Orbifold Submersion and Analytic Torsions
Cites Work
- Characteristic classes for algebraic vector bundles with Hermitian metric. II
- Characteristic classes for algebraic vector bundles with Hermitian metric. I
- Calculus on arithmetic surfaces
- Bott-Chern currents and complex immersions
- Analytic torsion and holomorphic determinant bundles. I: Bott-Chern forms and analytic torsion. II: Direct images and Bott-Chern forms. III: Quillen metrics on holomorphic determinants
- Arithmetic intersection theory
- Analytic torsion and the arithmetic Todd genus. (With an appendix by D. Zagier)
- An Adams-Riemann-Roch theorem in Arakelov geometry
- An arithmetic Riemann-Roch theorem
- Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6.Dirigé par P. Berthelot, A. Grothendieck et L. Illusie, Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussilia, S. Kleiman, M. Raynaud et J. P. Serre. Théorie des intersections et théorème de Riemann-Roch
- Intégration sur un ensemble analytique complexe
- Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127)
- INTERSECTION THEORY OF DIVISORS ON AN ARITHMETIC SURFACE
- Moving lemma for K1 -chains
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item