Hecke-Siegel's pull-back formula for the Epstein zeta function with a harmonic polynomial
From MaRDI portal
Publication:958656
DOI10.1016/j.jnt.2007.08.010zbMath1174.11071OpenAlexW1967406518MaRDI QIDQ958656
Publication date: 5 December 2008
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2007.08.010
Analytic theory (Epstein zeta functions; relations with automorphic forms and functions) (11E45) Other Dirichlet series and zeta functions (11M41)
Related Items (4)
The relative Hecke integral formula for an arbitrary extension of number fields ⋮ Generalized Whittaker functions for degenerate principal series of \(\mathrm{GL}(n, \mathbb{R})\) ⋮ On periodicity of geodesic continued fractions ⋮ Hecke’s Integral Formula for Relative Quadratic Extensions of Algebraic Number Fields
Cites Work
- On the functional equations satisfied by Eisenstein series
- Spectral decomposition and Eisenstein series
- Eisenstein group cocycles for \(\text{GL}_ n\) and values of \(L\)- functions
- Über die Werte der Ringklassen-L-Funktionen reell-quadratischer Zahlkörper an natürlichen Argumentstellen
- Automorphic forms on semisimple Lie groups. Notes by J. G. M. Mars.
- Hecke L-Functions and the Distribution of Totally Positive Integers
- Hecke’s Integral Formula for Relative Quadratic Extensions of Algebraic Number Fields
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Hecke-Siegel's pull-back formula for the Epstein zeta function with a harmonic polynomial