On realizable Galois module classes and Steinitz classes of nonabelian extensions
From MaRDI portal
Publication:958669
DOI10.1016/j.jnt.2007.02.009zbMath1189.11051OpenAlexW2029693182MaRDI QIDQ958669
Clement Bruche, Bouchaïb Sodaïgui
Publication date: 5 December 2008
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2007.02.009
Group rings of finite groups and their modules (group-theoretic aspects) (20C05) Class numbers, class groups, discriminants (11R29) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33) Other abelian and metabelian extensions (11R20)
Related Items (9)
Relative Galois module structure of octahedral extensions ⋮ Realizable classes of nonabelian extensions of order \(p^3\) ⋮ Steinitz classes of Galois extensions with Galois group having nontrivial center ⋮ On Steinitz classes of nonabelian Galois extensions and \(p\)-ary cyclic Hamming codes ⋮ Realizable Galois module classes over the group ring for non abelian extensions ⋮ Steinitz classes of tamely ramified Galois extensions of algebraic number fields ⋮ Realizable classes of metacylic extensions of degree \(lm\) ⋮ Steinitz classes of some abelian and nonabelian extensions of even degree ⋮ CLASSES DE STEINITZ D'EXTENSIONS NON ABÉLIENNES À GROUPE DE GALOIS D'ORDRE 16 OU EXTRASPÉCIAL D'ORDRE 32 ET PROBLÈME DE PLONGEMENT
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Relative Galois structure of rings of integers.
- Projective modules over group rings and maximal orders
- On Fröhlich's conjecture for rings of integers of tame extensions
- ``Galois module structure of quaternion extensions of degree 8
- Steinitz classes of relative Galois extensions of 2-power degree and embedding problems
- Realizable classes by non-abelian metacyclic extensions and Stickelberger elements
- Steinitz classes of extensions with Galois group \(A_4\)
- Galois module structure for dihedral extensions of degree 8: realizable classes over the group ring
- Galois module structure of elementary abelian extensions
- Realizable classes of tetrahedral extensions
- Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8
- Realizable classes of quaternion extensions of degree \(4\ell\)
- Steinitz classes of a nonabelian extension of degree $p^3$
- Steinitz Classes of Metacyclic Extensions
- Classes réalisables d'extensions non abéliennes
- Galois module structure of abelian extensions.
- Arithmetic and Galois module structure for tame extensions.
- Module structure of rings of integers in octahedral extensions
- Realizable Galois module classes for tetrahedral extensions
- Advanced Topics in Computional Number Theory
- Cyclic Extensions Without Relative Integral Bases
- The discriminants of relative extensions and the existence of integral bases
This page was built for publication: On realizable Galois module classes and Steinitz classes of nonabelian extensions