The focal geometry of circular and conical meshes
DOI10.1007/s10444-007-9045-4zbMath1159.65023OpenAlexW2140549904MaRDI QIDQ960000
Johannes Wallner, Helmut Pottmann
Publication date: 16 December 2008
Published in: Advances in Computational Mathematics (Search for Journal in Brave)
Full work available at URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.143.9398
discrete differential geometryMöbius geometryLaguerre geometrycircular meshconical meshdiscrete normalfocal meshoffset meshQuadrilateral mesh
Numerical aspects of computer graphics, image analysis, and computational geometry (65D18) Möbius geometries (51B10) Other special differential geometries (53A40) Laguerre geometries (51B15)
Related Items (15)
Cites Work
- Minimal surfaces from circle patterns: geometry from combinatorics
- \(\bar \partial\)-reductions of the multidimensional quadrilateral lattice. The multidimensional circular lattice
- The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices
- Darboux transformations for multidimensional quadrilateral lattices. I
- Multidimensional quadrilateral lattices are integrable.
- Infinitesimally flexible meshes and discrete minimal surfaces
- Parallelogrammgitter als Modelle pseudosphärischer Flächen
- Transformations of quadrilateral lattices
- On organizing principles of discrete differential geometry. Geometry of spheres
- Three–dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality
- Discrete isothermic surfaces.
- Lie sphere geometry. With applications to submanifolds
- Computational line geometry
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The focal geometry of circular and conical meshes