The group of isometries of a Banach space and duality
From MaRDI portal
Publication:960555
DOI10.1016/j.jfa.2008.06.004zbMath1166.46003arXiv0809.3644OpenAlexW2034204779MaRDI QIDQ960555
Publication date: 22 December 2008
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0809.3644
numerical rangedualityisometriesdissipative operatorsnumerical indexL-summandHermitian operatorsDaugavet equationC-rich subspace
Related Items (6)
Estimations of the numerical index of a JB*-triple ⋮ Isometries on extremely non-complex Banach spaces ⋮ Banach space characterizations of unitaries: a survey ⋮ On a second numerical index for Banach spaces ⋮ Lushness, numerical index one and duality ⋮ Projections in the convex hull of isometries on absolutely continuous function spaces
Cites Work
- \(M\)-ideals in Banach spaces and Banach algebras
- Banach spaces with a shrinking hyperorthogonal basis
- Dissipative operators in a Banach space
- Functional Hilbertian sums
- Geometric aspects of the Daugavet property
- The Daugavet property of \(C^{\ast}\)-algebras, \(JB^{\ast}\)-triples, and of their isometric preduals
- On the field of values subordinate to a norm
- Numerical index of vector-valued function spaces
- Semi-Inner-Product Spaces
- Numerical index of Banach spaces and duality
- Quotients of Banach Spaces with the Daugavet Property
- The Daugavet property for spaces of Lipschitz functions
- The Normed Space Numerical Index of C ∗ -Algebras
- Espaces de Banach ayant la propriété de Daugavet
- Banach spaces with the Daugavet property
- The Numerical Index of a Normed Space
- Finite-dimensional Banach spaces with numerical index zero
- Geometrical properties of the product of a \(C^*\)-algebra
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The group of isometries of a Banach space and duality