Surjectivity criteria for convolution operators in \(A^{-\infty}\)
DOI10.1016/J.CRMA.2010.01.015zbMath1190.32001OpenAlexW2038791396MaRDI QIDQ960986
Ryuichi Ishimura, Alexander V. Abanin, Le Hai Khoi
Publication date: 29 March 2010
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2010.01.015
convolution operatorentire functions of exponential typeanalytic functionalFourier-Borel transformationholomorphic functions of several complex variables
Linear composition operators (47B33) Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA)) (32A37) Entire functions of several complex variables (32A15) Holomorphic functions of several complex variables (32A10)
Related Items (6)
Cites Work
- Unnamed Item
- Pre-dual of the function algebra \(A^{-\infty}(D)\) and representation of functions in Dirichlet series
- Convolution equations in domains of \(\mathbb{C}^ n\)
- A division problem in the space of entire functions of exponential type
- On the duality between \(A^{-\infty }(D)\) and \(A^{-\infty }_D\) for convex domains
- Dual of the function algebra 𝐴^{-∞}(𝐷) and representation of functions in Dirichlet series
- A CRITERION FOR THE SOLVABILITY OF NONHOMOGENEOUS CONVOLUTION EQUATIONS IN CONVEX DOMAINS OFCn
- SUR LA CONDITON (S) DE KAWAI ET LA PROPRIÉTÉ DE CROISSANCE RÉGULIÈRE D'UNE FONCTION SOUS-HARMONIQUE ET D'UNE FONCTION ENTIÈRE
- The existence and the continuation of holomorphic solutions for convolution equations in tube domains
- Équations différentielles d'ordre infini
This page was built for publication: Surjectivity criteria for convolution operators in \(A^{-\infty}\)