Optimal designs for estimating the control values in multi-univariate regression models
From MaRDI portal
Publication:962203
DOI10.1016/j.jmva.2009.12.021zbMath1185.62131OpenAlexW2077298562MaRDI QIDQ962203
Mong-Na Lo Huang, Chun-Sui Lin
Publication date: 6 April 2010
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmva.2009.12.021
equivalence theoremcalibrationlocally optimal design\(c\)-criterionclassical estimatorcontrol valuescalar optimal design
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An exact formula for the mean squared error of the inverse estimator in the linear calibration problem
- When is the inverse regression estimator MSE-superior to the standard regression estimator in multivariate controlled calibration situations?
- Computing the optimal design for a calibration experiment
- D-optimal designs for a multivariate regression model
- Minimax and maximin efficient designs for estimating the location-shift parameter of parallel models with dual responses
- Design Aspects of Regression-Based Ratio Estimation
- Double points in nonlinear calibration
- Statistical Calibration: A Review
- Multivariate Calibration — Direct and Indirect Regression Methodology
- Optimal Experimental Designs
- Optimal Experimental Designs for Estimating the Independent Variable in Regression
- Classical and Inverse Regression Methods of Calibration in Extrapolation
- On the Problem of Calibration
- Optimal designs for dual response polynomial regression models
This page was built for publication: Optimal designs for estimating the control values in multi-univariate regression models