On multiplication in finite fields
From MaRDI portal
Publication:964921
DOI10.1016/j.jco.2009.11.002zbMath1227.65036OpenAlexW2039816130MaRDI QIDQ964921
Publication date: 21 April 2010
Published in: Journal of Complexity (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jco.2009.11.002
Analysis of algorithms and problem complexity (68Q25) Algebraic coding theory; cryptography (number-theoretic aspects) (11T71) Structure theory for finite fields and commutative rings (number-theoretic aspects) (11T30) Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.) (68Q17)
Related Items (17)
The tensor rank of semifields of order 16 and 81 ⋮ The quadratic hull of a code and the geometric view on multiplication algorithms ⋮ Secure computation using leaky correlations (asymptotically optimal constructions) ⋮ On some bounds for symmetric tensor rank of multiplication in finite fields ⋮ Tower of algebraic function fields with maximal Hasse-Witt invariant and tensor rank of multiplication in any extension of \(\mathbb{F}_2\) and \(\mathbb{F}_3\) ⋮ Polynomial constructions of Chudnovsky-type algorithms for multiplication in finite fields with linear bilinear complexity ⋮ Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method ⋮ Efficient multiplications in \(\mathbb F_5^{5n}\) and \(\mathbb F_7^{7n}\) ⋮ Dense families of modular curves, prime numbers and uniform symmetric tensor rank of multiplication in certain finite fields ⋮ Gaps between prime numbers and tensor rank of multiplication in finite fields ⋮ Multiplication of polynomials modulo \(x^n\) ⋮ Multiplicative complexity of bijective \(4\times 4\) \(S\)-boxes ⋮ On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields ⋮ On the tensor rank of multiplication in finite extensions of finite fields and related issues in algebraic geometry ⋮ New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of finite fields ⋮ Construction of asymmetric Chudnovsky-type algorithms for multiplication in finite fields ⋮ Arithmetic in finite fields based on the Chudnovsky-Chudnovsky multiplication algorithm
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Algebraic function fields and codes
- An improvement of the construction of the D. V. and G. V. Chudnovsky algorithm for multiplication in finite fields
- On the tensor rank of the multiplication in the finite fields
- The Magma algebra system. I: The user language
- Multiplication algorithm in a finite field and tensor rank of the multiplication.
- Quasi-optimal algorithms for multiplication in the extensions of \(\mathbb F_{16}\) of degree 13, 14 and 15
- On the bounds of the bilinear complexity of multiplication in some finite fields
- Curves with many points and multiplication complexity in any extension of \(\mathbb{F}_q\)
- Five, six, and seven-term Karatsuba-like formulae
- A generalized method for constructing subquadratic complexity GF(2/sup k/) multipliers
- Efficient Multiplication in $\mathbb{F}_{3^{\ell m}}$ , m ≥ 1 and 5 ≤ ℓ ≤ 18
- Comments on "Five, Six, and Seven-Term Karatsuba-Like Formulae
- Improved Asymptotic Bounds for Codes Using Distinguished Divisors of Global Function Fields
- Optimal Algorithms for Multiplication in Certain Finite Fields Using Elliptic Curves
- Constructions of algebraic-geometry codes
- Constructions of digital nets using global function fields
- Low-discrepancy sequences obtained from algebraic function fields over finite fields
- Improved Polynomial Multiplication Formulas over $IF₂$ Using Chinese Remainder Theorem
- Algebraic complexities and algebraic curves over finite fields
This page was built for publication: On multiplication in finite fields