Parabolic Kazhdan-Lusztig and \(R\)-polynomials for Boolean elements in the symmetric group.
From MaRDI portal
Publication:966146
DOI10.1016/j.ejc.2009.06.001zbMath1220.20005OpenAlexW1976655018MaRDI QIDQ966146
Publication date: 27 April 2010
Published in: European Journal of Combinatorics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.ejc.2009.06.001
Hecke algebrassymmetric groupstableauxCoxeter systemsKazhdan-Lusztig polynomialsBruhat orderrecursive formulas\(R\)-polynomials
Hecke algebras and their representations (20C08) Representations of finite symmetric groups (20C30) Reflection and Coxeter groups (group-theoretic aspects) (20F55)
Related Items
Proof of two conjectures of Brenti and Simion on Kazhdan-Lusztig polynomials ⋮ Kazhdan-Lusztig polynomials of Boolean elements ⋮ Ricci curvature, graphs and eigenvalues ⋮ Kazhdan-Lusztig polynomials, tight quotients and Dyck superpartitions. ⋮ Parabolic Kazhdan-Lusztig \(R\)-polynomials for quasi-minuscule quotients
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On some geometric aspects of Bruhat orderings. II: The parabolic analogue of Kazhdan-Lusztig polynomials
- Representations of Coxeter groups and Hecke algebras
- A combinatorial formula for Kazhdan-Lusztig polynomials
- Closed product formulas for certain \(R\)-polynomials
- \(J\)-chains and multichains, duality of Hecke modules, and formulas for parabolic Kazhdan-Lusztig polynomials
- Kazhdan-Lusztig polynomials of parabolic type
- Parabolic Kazhdan-Lusztig polynomials and Schubert varieties
- Kazhdan-Lusztig and \(R\)-polynomials, Young's lattice, and Dyck partitions.
- On the decomposition matrices of the quantized Schur algebra
- Boolean elements in Kazhdan-Lusztig theory.