A posteriori error analysis of nonconforming methods for the eigenvalue problem
DOI10.1007/s11424-009-9181-7zbMath1188.65150OpenAlexW2171431388MaRDI QIDQ967999
Publication date: 3 May 2010
Published in: Journal of Systems Science and Complexity (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11424-009-9181-7
Laplace equationa posteriori error analysisStokes equationnonconforming finite elementlinear elasticity problemssecond order elliptic eigenvalue problem
Classical linear elasticity (74B05) Estimates of eigenvalues in context of PDEs (35P15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Navier-Stokes equations (35Q30) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05) Numerical methods for eigenvalue problems for boundary value problems involving PDEs (65N25)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A posteriori error estimates for nonconforming finite element methods
- A unifying theory of a posteriori error control for nonconforming finite element methods
- A unifying theory of a posteriori finite element error control
- A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems
- Robust a posteriori error estimation for the nonconforming Fortin--Soulie finite element approximation
- Simple nonconforming quadrilateral Stokes element
- A Local Regularization Operator for Triangular and Quadrilateral Finite Elements
- P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems
- A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems
- Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation
- Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems
- A posteriori error estimators for nonconforming finite element methods
- Quasi-Interpolation and A Posteriori Error Analysis in Finite Element Methods
- Framework for the A Posteriori Error Analysis of Nonconforming Finite Elements