Strong laws of large numbers for random fields in martingale type \(p\) Banach spaces
From MaRDI portal
Publication:968459
DOI10.1016/j.spl.2010.01.007zbMath1195.60009OpenAlexW2068623336MaRDI QIDQ968459
Publication date: 5 May 2010
Published in: Statistics \& Probability Letters (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.spl.2010.01.007
Martingales with discrete parameter (60G42) Strong limit theorems (60F15) Probability theory on linear topological spaces (60B11) Limit theorems for vector-valued random variables (infinite-dimensional case) (60B12)
Related Items (2)
Rate of complete convergence for maximums of moving average sums of martingale difference fields in Banach spaces ⋮ Unnamed Item
Cites Work
- Marcinkiewicz-Zygmund type law of large numbers for double arrays of random elements in Banach spaces
- An asymmetric Marcinkiewicz-Zygmund LLN for random fields
- Martingales with values in uniformly convex spaces
- The law of large numbers and the central limit theorem in Banach spaces
- Abstract martingale convergence theorems
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Strong laws of large numbers for random fields in martingale type \(p\) Banach spaces