A refinement of Nesterenko's linear independence criterion with applications to zeta values
From MaRDI portal
Publication:976776
DOI10.1007/s00208-009-0457-yzbMath1206.11088OpenAlexW2171805844MaRDI QIDQ976776
Wadim Zudilin, Stéphane Fischler
Publication date: 16 June 2010
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00208-009-0457-y
Related Items (13)
Quantitative generalizations of Nesterenkos's linear independence criterion ⋮ A note on odd zeta values ⋮ A note on linear independence of polylogarithms over the rationals ⋮ Generalization of the criteria for linear independence of Nesterenko, Amoroso, Colmez, Fischler and Zudilin ⋮ Many odd zeta values are irrational ⋮ Distribution of irrational zeta values ⋮ On a criterion of linear independence of \(p\)-adic numbers ⋮ Restricted rational approximation and Apéry-type constructions ⋮ Many values of the Riemann zeta function at odd integers are irrational ⋮ Vectors of type II Hermite-Padé approximations and a new linear independence criterion ⋮ Nesterenko's criterion when the small linear forms oscillate ⋮ HYPERGEOMETRY INSPIRED BY IRRATIONALITY QUESTIONS ⋮ Nesterenko's linear independence criterion for vectors
Cites Work
- Unnamed Item
- Unnamed Item
- Arithmetic of linear forms involving odd zeta values
- On the linear independence of numbers over number fields
- On the linear independence in algebraic number fields
- The group structure for ζ(3)
- The Rhin–Viola method for log 2
- SÉRIES HYPERGÉOMÉTRIQUES BASIQUES, $q$-ANALOGUES DES VALEURS DE LA FONCTION ZÊTA ET SÉRIES D’EISENSTEIN
- Hypergéométrie et fonction zêta de Riemann
- Irrationality exponent and rational approximations with prescribed growth
- On the irrationality measure for a $ q$-analogue of $ \zeta(2)$
- La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs
- Irrationality of values of the Riemann zeta function
- IRRATIONALITÉ AUX ENTIERS IMPAIRS POSITIFS D'UN q-ANALOGUE DE LA FONCTION ZÊTA DE RIEMANN
- Approximation to real numbers by quadratic irrationals
- Approximation to real numbers by algebraic integers
- Irrationality of infinitely many values of the zeta function at odd integers.
This page was built for publication: A refinement of Nesterenko's linear independence criterion with applications to zeta values