Hermitean Téodorescu transform decomposition of continuous matrix functions on fractal hypersurfaces
From MaRDI portal
Publication:978484
DOI10.1155/2010/791358zbMath1191.15006OpenAlexW2024834403WikidataQ59253986 ScholiaQ59253986MaRDI QIDQ978484
Fred Brackx, Hennie De Schepper, Ricardo Abreu-Blaya, Juan Bory-Reyes
Publication date: 24 June 2010
Published in: Boundary Value Problems (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/228858
fractal boundaryHermitean Clifford analysisAhlfors-David regular boundarycontinuous matrix functionsHermitean Dirac operatorsHermitean Téodorescu transform
Hermitian, skew-Hermitian, and related matrices (15B57) Matrix exponential and similar functions of matrices (15A16)
Related Items
Duality for Hermitean systems in \(\mathbb R^{2n}\) ⋮ A Hilbert transform for matrix functions on fractal domains ⋮ Hölder norm estimate for a Hilbert transform in Hermitean Clifford analysis ⋮ A Hermitian Cauchy formula on a domain with fractal boundary ⋮ Boundary value problems associated to a Hermitian Helmholtz equation
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis
- Jump problem and removable singularities for monogenic functions
- A matrix Hilbert transform in Hermitean Clifford analysis
- A boundary value problem for Hermitian monogenic functions
- Hermitean Cauchy integral decomposition of continuous functions on hypersurfaces
- A Martinelli-Bochner formula on fractal domains
- The Hermitian Clifford analysis toolbox
- The Gauss-Green theorem for fractal boundaries
- Analysis of Dirac systems and computational algebra.
- Hermitian decomposition of continuous functions on a fractal surface
- Minkowski dimension and Cauchy transform in Clifford analysis
- Fundaments of Hermitean Clifford analysis. I: Complex structure
- Cauchy transform on nonrectifiable surfaces in Clifford analysis
- A theoretical framework for wavelet analysis in a Hermitean Clifford setting
- Complexified clifford analysis
- Hermitian Clifford analysis and resolutions
- Stirling Numbers and Spin-Euler Polynomials
- Fundaments of Hermitean Clifford analysis part II: splitting ofh-monogenic equations