Application of He's homotopy perturbation method for Cauchy problem of ill-posed nonlinear diffusion equation
DOI10.1155/2010/780207zbMath1196.35226OpenAlexW2036462343WikidataQ58650881 ScholiaQ58650881MaRDI QIDQ980810
Ali Zakeri, Azim Aminataei, Qodsiyeh Jannati
Publication date: 29 June 2010
Published in: Discrete Dynamics in Nature and Society (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/222974
Ill-posed problems for PDEs (35R25) Asymptotic expansions of solutions to PDEs (35C20) Theoretical approximation in context of PDEs (35A35) Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs (65M30)
Related Items (2)
Cites Work
- A numerical model for the process of gas exchange in the pulmonary capillaries
- The dynamical nature of a backlash system with and without fluid friction
- Recent development of the homotopy perturbation method
- Two-layer model for the process of blood oxygenation in the pulmonary capillaries - parabolic profiles in the core as well as in the plasma layer
- The homotopy perturbation method for nonlinear oscillators with discontinuities.
- Application of He's homotopy perturbation method to Volterra's integro-differential equation
- Homotopy perturbation method for solving boundary value problems
- Homotopy perturbation technique
- Entire solutions of partial differential equations with constant coefficients
- On convergence and stability conditions of homotopy perturbation method for an inverse heat conduction problem
- UNCERTAINTY IN THE FLUCTUATIONS OF THE PRICE OF STOCKS
- AN ELEMENTARY INTRODUCTION TO RECENTLY DEVELOPED ASYMPTOTIC METHODS AND NANOMECHANICS IN TEXTILE ENGINEERING
- Best Effort Flow Control in Network-on-Chip
- Converting Linear Programs to Network Problems
- Symmetric Stable Laws and Stable-Like Jump-Diffusions
- Barycentric Lagrange Interpolation
- New classes of similarity solutions of the inhomogeneous nonlinear diffusion equations
- Solution of a partial differential equation subject to temperature overspecification by He's homotopy perturbation method
- SOME ASYMPTOTIC METHODS FOR STRONGLY NONLINEAR EQUATIONS
- Application of homotopy perturbation method in the solution of Fokker–Planck equation
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Application of He's homotopy perturbation method for Cauchy problem of ill-posed nonlinear diffusion equation