A geometrical approach to indefinite least squares problems
DOI10.1007/s10440-009-9532-3zbMath1202.46090OpenAlexW1971473484MaRDI QIDQ982231
Juan Ignacio Giribet, Francisco Martínez Pería, Alejandra L. Maestripieri
Publication date: 6 July 2010
Published in: Acta Applicandae Mathematicae (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10440-009-9532-3
Theory of matrix inversion and generalized inverses (15A09) Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product) (46C05) Least squares and related methods for stochastic control systems (93E24) Applications of functional analysis in optimization, convex analysis, mathematical programming, economics (46N10) Linear operators on spaces with an indefinite metric (47B50)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An Analysis of the Total Least Squares Problem
- Moore--Penrose inverse in Kreĭn spaces
- On projections in a space with an indefinite metric
- Generalized inverses. Theory and applications.
- Oblique projections and abstract splines.
- The generalized weighted Moore-Penrose inverse
- Weighted Generalized Inverses, Oblique Projections, and Least-Squares Problems
- A Gauss–Markov Theorem for Infinite-Dimensional Regression Models with Possibly Singular Covariance
- Perturbation Theory for the Least Squares Problem with Linear Equality Constraints
- Filtering and smoothing in an H/sup infinity / setting
- A Stable and Efficient Algorithm for the Indefinite Linear Least-Squares Problem
- Linear estimation in Krein spaces. I. Theory
- Linear estimation in Krein spaces. II. Applications
- On Least Squares with Insufficient Observations
- Étude sur les variétés et les opérateurs de Julia, avec quelques applications