Multi-level Monte Carlo algorithms for infinite-dimensional integration on \(\mathbb R^{\mathbb N}\)
DOI10.1016/j.jco.2010.02.002zbMath1207.65005OpenAlexW2149958429MaRDI QIDQ983180
Ben Niu, Klaus Ritter, Thomas Müller-Gronbach, Fred J. Hickernell
Publication date: 3 August 2010
Published in: Journal of Complexity (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jco.2010.02.002
reproducing kernel Hilbert spacesMonte Carlo algorithmsrandomized algorithmsmulti-level methodworst-case errortractabilityminimal errorfixed subspace samplinginfinite-dimensional quadraturevariable subspace samplingintegration on sequence spacesworst-case cost
Analysis of algorithms (68W40) Monte Carlo methods (65C05) Integration with respect to measures and other set functions (28A25) Multidimensional problems (41A63) Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) (46E22) Approximate quadratures (41A55) Numerical quadrature and cubature formulas (65D32) Complexity and performance of numerical algorithms (65Y20) Randomized algorithms (68W20)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations
- Liberating the dimension
- Infinite-dimensional quadrature and approximation of distributions
- Tractability of multivariate problems. Volume I: Linear information
- On irregular functionals of SDEs and the Euler scheme
- Analyzing multi-level Monte Carlo for options with non-globally Lipschitz payoff
- Deterministic and stochastic error bounds in numerical analysis
- Monte Carlo complexity of global solution of integral equations
- Average-case analysis of numerical problems
- On polynomial-time property for a class of randomized quadratures
- The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension
- Multilevel Monte Carlo Path Simulation
- Variable Subspace Sampling and Multi-level Algorithms
- Monte Carlo Variance of Scrambled Net Quadrature
- Strong tractability of integration using scrambled Niederreiter points