On the solution of Dirichlet problem of complex Monge-Ampère equation on Cartan-Hartogs domain of the second type
From MaRDI portal
Publication:983659
DOI10.1007/S11425-009-0221-5zbMath1194.65040OpenAlexW1980822213MaRDI QIDQ983659
Publication date: 24 July 2010
Published in: Science in China. Series A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11425-009-0221-5
Dirichlet problemKähler-Einstein metriccomplex Monge-Ampère equationCartan-Hartogs domainplurisubharmonic solution
Global differential geometry of Hermitian and Kählerian manifolds (53C55) General theory of numerical methods in complex analysis (potential theory, etc.) (65E05) Monge-Ampère equations (35J96)
Cites Work
- Unnamed Item
- The Kähler-Einstein metric for some Hartogs domains over symmetric domains
- On the solution of Dirichlet's problem of the complex Monge-Ampère equation for the Cartan-Hartogs domain of the first type
- The Einstein-Kähler metric on the third Cartan-Hartogs domain
- The Einstein-Kähler metric on \(\{| z| ^ 2+| w| ^{2p}<1\}\)
- The Einstein-Kähler metrics on Cartan-Hartogs domain of the first type
- The computation of the Einstein-Kähler metric of Cartan-Hartogs domains
- A research into the numerical method of Dirichlet's problem of complex Monge-Ampère equation on Cartan-Hartogs domain of the third type
- Einstein-Kähler metric with explicit formula on super-Cartan domain of the fourth type
- The Einstein-Kähler metric on Hua construction of the first type
- Einstein-Kähler metric on Cartan-Hartogs domain of the second type
- THE EINSTEIN-KÄHLER METRICS ON HUA DOMAIN
- On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of fefferman's equation
This page was built for publication: On the solution of Dirichlet problem of complex Monge-Ampère equation on Cartan-Hartogs domain of the second type