Laguerre calculus and Paneitz operator on the Heisenberg group
From MaRDI portal
Publication:983674
DOI10.1007/s11425-009-0056-0zbMath1195.35114OpenAlexW2255898025MaRDI QIDQ983674
Shu-Cheng Chang, Der-Chen E. Chang, Jingzhi Tie
Publication date: 24 July 2010
Published in: Science in China. Series A (Search for Journal in Brave)
Full work available at URL: http://ntur.lib.ntu.edu.tw/bitstream/246246/184009/1/05.pdf
Fundamental solutions to PDEs (35A08) Subelliptic equations (35H20) PDEs on Heisenberg groups, Lie groups, Carnot groups, etc. (35R03)
Related Items (6)
The Laguerre calculus on the nilpotent Lie groups of step two ⋮ On fundamental solution for powers of the sub-Laplacian on the Heisenberg group ⋮ The growth of \(H\)-harmonic functions on the Heisenberg group ⋮ The heat kernel of sub-Laplace operator on nilpotent Lie groups of step two ⋮ The Paneitz operator on the anisotropic quaternionic Heisenberg group ⋮ An operator related to the sub-Laplacian on the quaternionic Heisenberg group
Cites Work
- Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains
- Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians. I
- Psuedo-Einstein Structures on CR Manifolds
- Harmonic Analysis in Phase Space. (AM-122)
- Calculus on Heisenberg Manifolds. (AM-119)
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- Fourier analysis on the Heisenberg group
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Laguerre calculus and Paneitz operator on the Heisenberg group