Extremals for the Sobolev inequality on the seven-dimensional quaternionic Heisenberg group and the quaternionic contact Yamabe problem

From MaRDI portal
Publication:983898

DOI10.4171/JEMS/222zbMath1196.53023arXivmath/0703044WikidataQ125599527 ScholiaQ125599527MaRDI QIDQ983898

Dimiter Vassilev, Stefan Ivanov, Ivan Minchev

Publication date: 13 July 2010

Published in: Journal of the European Mathematical Society (JEMS) (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/math/0703044




Related Items (21)

The sharp lower bound of the first eigenvalue of the sub-Laplacian on a quaternionic contact manifold in dimension sevenA Lichnerowicz-type result on a seven-dimensional quaternionic contact manifoldPerturbation of Yamabe equation on Iwasawa \(N\) groups in presence of symmetryThe tangential Cauchy-Fueter complex on the quaternionic Heisenberg groupSharp Hardy-Littlewood-Sobolev inequalities on quaternionic Heisenberg groupsSolution of the qc Yamabe equation on a 3-Sasakian manifold and the quaternionic Heisenberg groupThe optimal constant in the \(L^2\) Folland-Stein inequality on the H-type groupQuaternionic Kähler and \(\mathrm{Spin}(7)\) metrics arising from quaternionic contact Einstein structuresThe sharp lower bound of the first eigenvalue of the sub-Laplacian on a quaternionic contact manifoldA Bonnet-Myers type theorem for quaternionic contact structuresThe Lichnerowicz and Obata first eigenvalue theorems and the Obata uniqueness result in the Yamabe problem on CR and quaternionic contact manifoldsSharp Hardy-Littlewood-Sobolev inequalities on a class of H-type groupsOn the equivalence of quaternionic contact structuresConformal quaternionic contact curvature and the local sphere theoremThe topology of quaternionic contact manifoldsOn the existence of local quaternionic contact geometriesThe qc Yamabe problem on non-spherical quaternionic contact manifoldsThe Yamabe operator and invariants on octonionic contact manifolds and convex cocompact subgroups of \(F_{4(-20)}\)Unnamed ItemOn the tangential Cauchy-Fueter operators on nondegenerate quadratic hypersurfaces in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}${\mathbb {H}^2}$\end{document}The Obata first eigenvalue theorem on a seven-dimensional quaternionic contact manifold



Cites Work


This page was built for publication: Extremals for the Sobolev inequality on the seven-dimensional quaternionic Heisenberg group and the quaternionic contact Yamabe problem