Dynamical Gröbner bases over Dedekind rings
DOI10.1016/j.jalgebra.2010.04.014zbMath1200.13047OpenAlexW2018462023MaRDI QIDQ984989
Amina Hadj Kacem, Ihsen Yengui
Publication date: 20 July 2010
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2010.04.014
Gröbner basisconstructive mathematicsGröbner ringsDedekind ringsdynamical Gröbner basisideal membership problemprincipal rings
Polynomial rings and ideals; rings of integer-valued polynomials (13F20) Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) (13P10) Dedekind, Prüfer, Krull and Mori rings and their generalizations (13F05)
Related Items (20)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Dynamical Gröbner bases
- On the construction of Gröbner bases using syzygies
- A constructive comparison of the rings \(R(X)\) and \(R\langle X\rangle\) and application to the Lequain-Simis induction theorem
- Syzygies of canonical curves and special linear series
- A course in constructive algebra
- Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen
- Krull dimension, Nullstellensätze and dynamical evaluation
- Approximating rings of integers in number fields
- Algorithmic theory of arithmetic rings, Prüfer rings and Dedekind rings. (Théorie algorithmique des anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind.)
- Gröbner bases with coefficients in rings
- Making the use of maximal ideals constructive
- Hidden constructions in abstract algebra. VI: The theorem of Maroscia and Brewer {\&} Costa
- Stably free modules over $\mathbf{R}[X$ of rank $> \dim\mathbf{R}$ are free]
- A standard basis approach to syzygies of canonical curves.
- Sketches and computation – II: dynamic evaluation and applications
- Factoring into coprimes in essentially linear time
- Nontrivial Uses of Trivial Rings
- Hidden constructions in abstract algebra. Krull Dimension of distributive lattices and commutative rings
- Dynamical method in algebra: Effective Nullstellensätze
This page was built for publication: Dynamical Gröbner bases over Dedekind rings