Growth envelopes in Muckenhoupt weighted function spaces: the general case
From MaRDI portal
Publication:985044
DOI10.7169/facm/1277811640zbMath1201.46031OpenAlexW2054478381WikidataQ57339754 ScholiaQ57339754MaRDI QIDQ985044
Publication date: 20 July 2010
Published in: Functiones et Approximatio. Commentarii Mathematici (Search for Journal in Brave)
Full work available at URL: https://projecteuclid.org/euclid.facm/1277811640
Function spaces arising in harmonic analysis (42B35) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Research exposition (monographs, survey articles) pertaining to functional analysis (46-02)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Weighted Besov and Triebel spaces: Interpolation by the real method
- Entropy numbers of embeddings of function spaces with Muckenhoupt weights. III: Some limiting cases
- Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I
- Low regularity classes and entropy numbers
- Weighted Hardy spaces
- Hölder inequalities and sharp embeddings in function spaces of \(B_{pq}^ s\) and \(F_{pq}^ s\) type
- Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case \(q<1\)
- Weighted \(L^q\)-theory for the Stokes resolvent in exterior domains
- Atomic and molecular decompositions of anisotropic Besov spaces
- Matrix-weighted Besov spaces
- On sharp embeddings of Besov and Triebel-Lizorkin spaces in the subcritical case
- Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis
- Growth envelope functions in Besov and Sobolev spaces. Local versus global results
- Duality of matrix-weighted Besov spaces
- Hardy's inequality with weights
- Weighted Norm Inequalities for the Hardy Maximal Function
- The equivalence of two conditions for weight functions
- Matrix-weighted Besov spaces and conditions of A_p type for 0 less than p \leq 1
- Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces
- Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures