Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

An efficiency study of polynomial eigenvalue problem solvers for quantum dot simulations

From MaRDI portal
Publication:987884
Jump to:navigation, search

DOI10.11650/twjm/1500405878zbMath1198.65070OpenAlexW1535693982MaRDI QIDQ987884

Tsung-Ming Huang, Chang-Tse Lee, Wei-Chung Wang

Publication date: 2 September 2010

Published in: Taiwanese Journal of Mathematics (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.11650/twjm/1500405878


zbMATH Keywords

numerical examplesquantum dotSchrödinger equationKrylov subspace methodsJacobi-Davidson methodspolynomial eigenvalue problemscorrection equationspreconditioning schemes


Mathematics Subject Classification ID

Computational methods for sparse matrices (65F50) Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Preconditioners for iterative methods (65F08)


Related Items

An efficient numerical algorithm for computing densely distributed positive interior transmission eigenvalues ⋮ A parallel polynomial Jacobi-Davidson approach for dissipative acoustic eigenvalue problems


Uses Software

  • SLEPc
  • PETSc
  • ARPACK



This page was built for publication: An efficiency study of polynomial eigenvalue problem solvers for quantum dot simulations

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:987884&oldid=12981712"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 21:23.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki