Hilbert-Speiser number fields and Stickelberger ideals
From MaRDI portal
Publication:988066
DOI10.5802/jtnb.690zbMath1205.11119OpenAlexW2057961848MaRDI QIDQ988066
Publication date: 25 August 2010
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_2009__21_3_589_0
Cyclotomic extensions (11R18) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the ring of \(p\)-integers of a cyclic \(p\)-extension over a number field
- A class number formula for the \(p\)-cyclotomic field
- \(\mathbb Z_p\)-extensions of complex multiplication fields
- Hilbert-Speiser number fields for a prime \(p\) inside the \(p\)-cyclotomic field
- On the Stickelberger ideal and the circular units of an abelian field
- Class numbers and \(\mathbb Z_p\)-extensions
- The non-p-part of the class number in a cyclotomic \(\mathbb{Z}_p\)-extension
- Cyclic Galois extensions of commutative rings
- Normal integral bases in Kummer extensions of prime degree
- On the ring of integers of a tame Kummer extension over a number field.
- Galois module structure of elementary abelian extensions
- Stickelberger ideals of conductor \(p\) and their application
- Normal integral bases for cyclic Kummer extensions
- Ideal Class Groups of Iwasawa-Theoretical Abelian Extensions Over the Rational Field
- On the parity of the class number of the 7nth cyclotomic field
- Galois module structure of abelian extensions.
- Class Number Computations of Real Abelian Number Fields
- Euler Systems