Unconstrained recursive importance sampling
DOI10.1214/09-AAP650zbMath1207.65007arXiv0807.0762MaRDI QIDQ988764
Publication date: 18 August 2010
Published in: The Annals of Applied Probability (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0807.0762
stochastic differential equationconvergenceimportance samplingnumerical experimentsMonte Carlo simulationGaussian distributioncentral limit theoremBlack-Scholes modeldiffusion processesvariance reductionchange of measureGirsanov theoremstochastic algorithmItô processconvergence theoremrecursive proceduresbarrier optionslog-concave probability distributionsRobbins-Monro algorithmbasis in \(L^2\)Escher transformfinite-dimensional settingsinfinite-dimensional settingsNIG distribution
Monte Carlo methods (65C05) Stochastic ordinary differential equations (aspects of stochastic analysis) (60H10) Diffusion processes (60J60) Computational methods for stochastic equations (aspects of stochastic analysis) (60H35) Numerical solutions to stochastic differential and integral equations (65C30) Stochastic particle methods (65C35)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Convergence and robustness of the Robbins-Monro algorithm truncated at randomly varying bounds
- Weak approximation of killed diffusion using Euler schemes.
- An adaptive scheme for the approximation of dissipative systems
- Asymptotically Optimal Importance Sampling and Stratification for Pricing Path-Dependent Options
- Asymptotic Almost Sure Efficiency of Averaged Stochastic Algorithms
- Adaptative Monte Carlo Method, A Variance Reduction Technique
- Optimal Importance Sampling Parameter Search for Lévy Processes via Stochastic Approximation
- Stability of Stochastic Approximation under Verifiable Conditions