Second order minimax estimation of the mean
DOI10.1016/j.jspi.2010.04.056zbMath1327.62038OpenAlexW2044595772MaRDI QIDQ989251
Zinoviy Landsman, Daoud Bshouty, Shaul K. Bar-Lev
Publication date: 19 August 2010
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jspi.2010.04.056
natural exponential familyvariance functionEuler's equationexponential dispersion modelSturm-Liouville systemBabel classHinde-Demétrio classsecond order minimax estimatorvariance functions regular at zero and infinity
Asymptotic properties of parametric estimators (62F12) Point estimation (62F10) Bayesian problems; characterization of Bayes procedures (62C10)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On Hinde-Demétrio regression models for overdispersed count data
- Natural real exponential families with cubic variance functions
- Reproducibility and natural exponential families with power variance functions
- Overdispersion: Models and estimation.
- Minimax estimation of the mean of a normal distribution when the parameter space is restricted
- Natural exponential families with quadratic variance functions
- Variance functions with meromorphic means
- On Lévy measures for infinitely divisible natural exponential families
- Exponential dispersion models: second-order minimax estimation of the mean for unknown dispersion parameter
- On Strict Arcsine Distribution
- SOME PROBLEMS IN THE THEORY OF A STURM-LIOUVILLE EQUATION
- A Property of Count Distributions in the Hinde–Demétrio Family
- A uniform saddlepoint expansion for the null-distribution of the wilcoxon-mann-whitney statistic
- Minimax Estimates of the Mean of a Normal Distribution with Known Variance
- First passage times on zero and one and natural exponential families
- Second-order minimax estimation of the mean value for exponential dispersion models
This page was built for publication: Second order minimax estimation of the mean