\(L^p\) and \(W^{1,p}\) regularity of the solution of a steady transport equation
DOI10.1016/j.crma.2010.06.025zbMath1200.35207OpenAlexW1968536606MaRDI QIDQ990242
Publication date: 6 September 2010
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2010.06.025
Smoothness and regularity of solutions to PDEs (35B65) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Finite element methods applied to problems in fluid mechanics (76M10) Existence, uniqueness, and regularity theory for incompressible viscous fluids (76D03) Weak solutions to PDEs (35D30) Boltzmann equations (35Q20)
Related Items (7)
Cites Work
- Existence results in Sobolev spaces for a stationary transport equation
- Ordinary differential equations, transport theory and Sobolev spaces
- Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition
- Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport
- Unnamed Item
This page was built for publication: \(L^p\) and \(W^{1,p}\) regularity of the solution of a steady transport equation