Escape probability, mean residence time and geophysical fluid particle dynamics
From MaRDI portal
Publication:992138
DOI10.1016/S0167-2789(99)00096-2zbMath1194.76241arXivmath/9901099OpenAlexW2026052854MaRDI QIDQ992138
Vincent J. Ervin, James R. Brannan, Jin-qiao Duan
Publication date: 11 September 2010
Published in: Physica D (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/9901099
Hydrology, hydrography, oceanography (86A05) Stochastic analysis applied to problems in fluid mechanics (76M35) Incompressible inviscid fluids (76B99)
Related Items
Quantifying model uncertainty in dynamical systems driven by non-Gaussian Lévy stable noise with observations on mean exit time or escape probability ⋮ A computational analysis for mean exit time under non-Gaussian Lévy noises ⋮ Parameter estimation via homogenization for stochastic dynamical systems with oscillating coefficients ⋮ MEAN EXIT TIME AND ESCAPE PROBABILITY FOR A TUMOR GROWTH SYSTEM UNDER NON-GAUSSIAN NOISE ⋮ Dynamical behavior of the activator-repressor circuit model under random fluctuations ⋮ Escape Probability for Stochastic Dynamical Systems with Jumps ⋮ Discovering mean residence time and escape probability from data of stochastic dynamical systems
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Fokker-Planck equation. Methods of solution and applications
- Chaotic transport in dynamical systems
- Geometric structures, lobe dynamics, and Lagrangian transport in flows with aperiodic time-dependence, with applications to Rossby wave flow
- Dissipative quasi-geostrophic dynamics under random forcing
- An analytical study of transport, mixing and chaos in an unsteady vortical flow
- Random Perturbations of Heteroclinic Attractors
- A Direct Approach to the Exit Problem
- Chaotic transport in the homoclinic and heteroclinic tangle regions of quasiperiodically forced two-dimensional dynamical systems
- Chaotic transport by Rossby waves in shear flow
- Random perturbations of Hamiltonian systems
- Stochastic differential equations. An introduction with applications.