\(\hat{\mathfrak sl}(2)_{-\frac{1}{2}}\): a case study

From MaRDI portal
Publication:993205

DOI10.1016/j.nuclphysb.2009.01.008zbMath1194.81223arXiv0810.3532OpenAlexW1957806614MaRDI QIDQ993205

David Ridout

Publication date: 10 September 2010

Published in: Nuclear Physics. B (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/0810.3532




Related Items (max. 100)

Weight representations of admissible affine vertex algebrasAn admissible level \(\widehat{\mathfrak{osp}}(1| 2)\)-model: modular transformations and the Verlinde formulaModularity of logarithmic parafermion vertex algebrasFusion rules for the logarithmicN= 1 superconformal minimal models: I. The Neveu–Schwarz sectorBraided tensor categories of admissible modules for affine Lie algebrasRelaxed highest-weight modules. I: Rank 1 casesW-algebras for Argyres-Douglas theoriesCoset constructions of logarithmic \((1, p)\) modelsHiggs and Coulomb branches from vertex operator algebrasRigid tensor structure on big module categories for some \(W\)-(super)algebras in type \(A\)\(\hat{\mathfrak sl}(2)_{-1/2}\) and the triplet modelAdmissible level \(\mathfrak{osp}(1|2)\) minimal models and their relaxed highest weight modulesRelaxed singular vectors, Jack symmetric functions and fractional level \(\widehat{\mathfrak{sl}}(2)\) modelsDefining relations for minimal unitary quantum affine W-algebrasMacdonald index and chiral algebraModular data and Verlinde formulae for fractional level WZW models IRelating the archetypes of logarithmic conformal field theoryModular data and Verlinde formulae for fractional level WZW models. IICosets, characters and fusion for admissible-level \(\mathfrak{osp}(1 | 2)\) minimal modelsLogarithmic W-algebras and Argyres-Douglas theories at higher rankModular transformations and Verlinde formulae for logarithmic (\(p_+,p_-\))-modelsTensor categories arising from the Virasoro algebraStaggered and affine Kac modules over \(A_1^{(1)}\)Staggered modules of \(N = 2\) superconformal minimal modelsBosonic ghosts at \(c=2\) as a logarithmic CFTVertex algebraic intertwining operators among generalized Verma modules for affine Lie algebrasFusion in fractional level \(\widehat{\mathfrak sl}(2)\)-theories with \(k=-\frac{1}{2}\)Schur-Weyl duality for Heisenberg cosetsUnitary and non-unitary \(N=2\) minimal modelsStrings on $\mathrm{AdS}_3 \times S^3 \times S^3 \times S^1$Braided tensor categories related to \(\mathcal{B}_p\) vertex algebrasDeformation quantizations from vertex operator algebrasAdmissible-level \(\mathfrak{sl}_3\) minimal modelsRelaxed highest-weight modules II: Classifications for affine vertex algebrasBosonic ghostbusting: the bosonic ghost vertex algebra admits a logarithmic module category with rigid fusionFusion rules for the logarithmic \(N\)=1 superconformal minimal models. II: Including the Ramond sector



Cites Work


This page was built for publication: \(\hat{\mathfrak sl}(2)_{-\frac{1}{2}}\): a case study