Tail exponent estimation via broadband log density-quantile regression
From MaRDI portal
Publication:993809
DOI10.1016/j.jspi.2010.04.035zbMath1233.62110OpenAlexW2037762990MaRDI QIDQ993809
Scott H. Holan, Tucker S. McElroy
Publication date: 20 September 2010
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jspi.2010.04.035
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (4)
Weighted least squares estimators for the Parzen tail index ⋮ Tail index estimation with a fixed tuning parameter fraction ⋮ On the measurement and treatment of extremes in time series ⋮ Tail exponent estimation via broadband log density-quantile regression
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Moment-based tail index estimation
- A moment estimator for the index of an extreme-value distribution
- Tail exponent estimation via broadband log density-quantile regression
- Asymptotic normality of the kernel quantile estimator
- On the estimation of the quantile density function
- Kernel estimates of the tail index of a distribution
- Limit theorems for the median deviation
- Limit theorems on order statistics
- Statistical inference using extreme order statistics
- A simple general approach to inference about the tail of a distribution
- Subsampling
- A law of the logarithm for kernel quantile density estimators
- Unified estimators of smooth quantile and quantile density functions
- Optimal rates of convergence for estimates of the extreme value index
- The jackknife and bootstrap
- Refined Pickands estimators of the extreme value index
- Uniform consistency of generalized kernel estimators of quantile density
- Quantile probability and statistical data modeling
- Broadband Semiparametric Estimation of the Memory Parameter of a Long‐Memory Time Series Using Fractional Exponential Models
- On Tail Categorization of Probability Laws
- Classification of Probability Laws by Tail Behavior
- Estimation of the Minimum of a Function Using Order Statistics
- Nonparametric Statistical Data Modeling
- Iterative Solution Methods
- Generalizations of the Hill estimator -- asymptotic versus finite sample behaviour
This page was built for publication: Tail exponent estimation via broadband log density-quantile regression