Positivity of exponential Runge-Kutta methods
DOI10.1007/s10543-007-0124-1zbMath1125.65068OpenAlexW1970646811MaRDI QIDQ996813
Marnix van Daele, Alexander Ostermann
Publication date: 19 July 2007
Published in: BIT (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10543-007-0124-1
Abstract parabolic equations (35K90) One-parameter semigroups and linear evolution equations (47D06) Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs (65M12) Numerical methods for initial value problems involving ordinary differential equations (65L05) Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations (65L06) Numerical solutions to equations with linear operators (65J10) Linear differential equations in abstract spaces (34G10)
Related Items (7)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Exponential time differencing for stiff systems
- A class of explicit multistep exponential integrators for semilinear problems
- Semigroups of linear operators and applications to partial differential equations
- B-convergence results for linearly implicit one step methods
- On positivity, shape, and norm-bound preservation of time-stepping methods for semigroups
- Exponential Runge-Kutta methods for parabolic problems.
- A class of explicit exponential general linear methods
- Solving Ordinary Differential Equations I
- Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques
- Fourth-Order Time-Stepping for Stiff PDEs
- Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants
- Explicit Exponential Runge--Kutta Methods for Semilinear Parabolic Problems
- What is the Laplace Transform?
This page was built for publication: Positivity of exponential Runge-Kutta methods