On the Napoleon-Torricelli configuration in affine Cayley-Klein planes
From MaRDI portal
Publication:998237
DOI10.1007/BF02960861zbMath1124.51005MaRDI QIDQ998237
Publication date: 29 August 2007
Published in: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (Search for Journal in Brave)
Elementary problems in Euclidean geometries (51M04) Absolute planes in metric geometry (51F05) Euclidean geometries (general) and generalizations (51M05) Minkowski geometries in nonlinear incidence geometry (51B20)
Related Items (2)
Burmester theory in Cayley-Klein planes with affine base ⋮ Circle geometry in affine Cayley-Klein planes
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On converses of Napoleon's theorem and a modified shape function
- Hyperoskulierende logarithmische Spiralen in affinen CK-Ebenen. (Hyperosculating logarithmic spirals in affine CK-planes)
- On Napoleon's theorem in the isotropic plane
- Propellers in affine Cayley-Klein planes
- Napoleon revisited
- On the curvature relation of constraint motions in affine CK-planes. I
- Geometric methods and optimization problems
- Napoleon's theorem with weights in \(n\)-space
- On the Abramescu circle in affine CK-planes with respect to the general group of similarities
- Two generalizations of Napoleon's theorem in finite planes
- On the theorem of Napoleon and related topics
- Triangles. I: Shapes
- Shape-regular polygons in finite planes
- An Analogue of Napoleon’s Theorem in the Hyperbolic Plane
This page was built for publication: On the Napoleon-Torricelli configuration in affine Cayley-Klein planes