Degree sum and nowhere-zero 3-flows
From MaRDI portal
Publication:998360
DOI10.1016/J.DISC.2007.11.045zbMath1167.05309OpenAlexW2031824194MaRDI QIDQ998360
Publication date: 28 January 2009
Published in: Discrete Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.disc.2007.11.045
Related Items (19)
Neighborhood unions and \(Z_3\)-connectivity in graphs ⋮ Nowhere-zero 3-flows of graphs with independence number two ⋮ Degree sum of a pair of independent edges and \(Z_{3}\)-connectivity ⋮ Degree sum of 3 independent vertices and \(Z_3\)-connectivity ⋮ A note on \(Z_3\)-connected graphs with degree sum condition ⋮ \(Z_3\)-connectivity of wreath product of graphs ⋮ On dense strongly \(\mathbb{Z}_{2 s + 1}\)-connected graphs ⋮ Degree condition and \(Z_3\)-connectivity ⋮ Group connectivity and group colorings of graphs --- a survey ⋮ Nowhere-zero 3-flows and \(Z_3\)-connectivity in bipartite graphs ⋮ Nowhere-zero 3-flows and modulo \(k\)-orientations ⋮ The complexity of the zero-sum 3-flows ⋮ Ore-condition and \(Z_3\)-connectivity ⋮ Pósa-condition and nowhere-zero 3-flows ⋮ The Chvátal-Erdős condition for group connectivity in graphs ⋮ Degree sum condition for \(Z_{3}\)-connectivity in graphs ⋮ Nowhere-zero 3-flows and \(Z_{3}\)-connectivity of a family of graphs ⋮ Nowhere-zero 3-flows of claw-free graphs ⋮ EVERY N2-LOCALLY CONNECTED CLAW-FREE GRAPH WITH MINIMUM DEGREE AT LEAST 7 IS Z3-CONNECTED
Cites Work
- Unnamed Item
- Nowhere-zero \(Z_3\)-flows through \(Z_3\)-connectivity
- Group connectivity of graphs with diameter at most 2
- Nowhere-zero 3-flows in triangularly connected graphs
- Nowhere-zero 6-flows
- Group connectivity of graphs --- a nonhomogeneous analogue of nowhere-zero flow properties
- Group connectivity of 3-edge-connected chordal graphs
- Nowhere-zero flows in tensor product of graphs
- Nowhere‐zero 3‐flows in locally connected graphs
- A Contribution to the Theory of Chromatic Polynomials
This page was built for publication: Degree sum and nowhere-zero 3-flows