Parameter estimation in semi-linear models using a maximal invariant likelihood function
From MaRDI portal
Publication:998984
DOI10.1016/j.jspi.2008.07.011zbMath1153.62027OpenAlexW1982119703MaRDI QIDQ998984
Maxwell L. King, Jahar Lal Bhowmik
Publication date: 30 January 2009
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2005/wp18-05.pdf
Nonparametric regression and quantile regression (62G08) Point estimation (62F10) General nonlinear regression (62J02)
Related Items (2)
Deriving tests of the semi-linear regression model using the density function of a maximal invariant ⋮ A maximum likelihood method for the incidental parameter problem
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Testing for autoregressive against moving average errors in the linear regression model
- Marginal-likelihood score-based tests of regression disturbances in the presence of nuisance parameters
- Estimation and testing of regression disturbances based on modified likelihood functions
- Maximal invariant likelihood based testing of semi-linear models
- On a formula for the distribution of the maximum likelihood estimator
- Nonlinear Regression
- Marginal likelihood methods for distributed lag models
- Maximum Likelihood Estimation of Regression Models With Stochastic Trend Components
- Data Transformations and the Linear Model
- Consistent Estimates Based on Partially Consistent Observations
This page was built for publication: Parameter estimation in semi-linear models using a maximal invariant likelihood function