stochvol

From MaRDI portal
Software:31210



swMATH19383WikidataQ124251214CRANstochvolMaRDI QIDQ31210

Efficient Bayesian Inference for Stochastic Volatility (SV) Models

Gregor Kastner, Darjus Hosszejni

Last update: 26 November 2023

Copyright license: GNU General Public License, version 3.0, GNU General Public License, version 2.0

Software version identifier: 3.2.1, 0.5-0, 0.5-1, 0.6-0, 0.6-1, 0.7-0, 0.7-1, 0.8-0, 0.8-1, 0.8-2, 0.8-4, 0.9-0, 0.9-1, 1.0.0, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.2.0, 1.2.1, 1.2.2, 1.2.3, 1.3.0, 1.3.1, 1.3.2, 1.3.3, 2.0.0, 2.0.1, 2.0.2, 2.0.3, 2.0.4, 3.0.0, 3.0.1, 3.0.2, 3.0.3, 3.0.4, 3.0.5, 3.0.6, 3.1.0, 3.2.0, 3.2.3

Source code repository: https://github.com/cran/stochvol

Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models with and without asymmetry (leverage) via Markov chain Monte Carlo (MCMC) methods. Methodological details are given in Kastner and Frühwirth-Schnatter (2014) <doi:10.1016/j.csda.2013.01.002> and Hosszejni and Kastner (2019) <doi:10.1007/978-3-030-30611-3_8>; the most common use cases are described in Hosszejni and Kastner (2021) <doi:10.18637/jss.v100.i12> and Kastner (2016) <doi:10.18637/jss.v069.i05> and the package examples.




Related Items (25)

Volatility and return jumps in BitcoinApproaches Toward the Bayesian Estimation of the Stochastic Volatility Model with LeverageConducting highly principled data science: a statistician's job and joyEfficient Bayesian Inference for Nonlinear State Space Models With Univariate Autoregressive State EquationDebt regimes and the effectiveness of monetary policyThe split-SV modelSequential Bayesian inference for static parameters in dynamic state space modelsbayesianVARsThe copula directional dependence by stochastic volatility modelsDynamic tail inference with log-Laplace volatilityBlind source separation for compositional time seriesThe heterogeneous impact of monetary policy on the US labor marketAncillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility modelsFast inference for time-varying quantiles via flexible dynamic models with application to the characterization of atmospheric riversAchieving shrinkage in a time-varying parameter model frameworkshrinkDSMbsvarsA flexible mixed-frequency vector autoregression with a steady-state priorSparse Bayesian time-varying covariance estimation in many dimensionsPredicting crypto‐currencies using sparse non‐Gaussian state space modelsFORECASTING GLOBAL EQUITY INDICES USING LARGE BAYESIAN VARSshrinkTVPfactorstochvolSpecification tests for time-varying parameter models with stochastic volatilityBGVAR


This page was built for software: stochvol