\(q\)-extension of the Euler formula and trigonometric functions (Q1033712)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: \(q\)-extension of the Euler formula and trigonometric functions |
scientific article; zbMATH DE number 5627977
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | \(q\)-extension of the Euler formula and trigonometric functions |
scientific article; zbMATH DE number 5627977 |
Statements
\(q\)-extension of the Euler formula and trigonometric functions (English)
0 references
10 November 2009
0 references
Replacing the factorial \(n!\) by the \(q\)-factorial \[ [n]_q!=\prod_{k=1}^n\frac{1-q^k}{1-q} \] the author defines the \(q\)-exponential function \[ e_q(z)=\sum_{n=0}^\infty\frac{z^n}{[n]_q!} \] and the related \(q\)-trigonometric functions \(\cos_q(z)\) and \(\sin_q(z)\) as the real and imaginary parts of \(e_q(iz)\). Then he derives \(q\)-analogues of classical formulae satisfied by these functions.
0 references
exponential function
0 references
trigonometric function
0 references
\(q\)-analogue
0 references
0 references
0.89973444
0 references
0.8876585
0 references
0.8854554
0 references
0.8826577
0 references
0.87675846
0 references
0.87290967
0 references
0 references