Integrality of the monopole number in SU(2) Yang-Mills-Higgs theory on \({\mathbb{R}}^ 3\) (Q1058219)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Integrality of the monopole number in SU(2) Yang-Mills-Higgs theory on \({\mathbb{R}}^ 3\) |
scientific article; zbMATH DE number 3899822
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Integrality of the monopole number in SU(2) Yang-Mills-Higgs theory on \({\mathbb{R}}^ 3\) |
scientific article; zbMATH DE number 3899822 |
Statements
Integrality of the monopole number in SU(2) Yang-Mills-Higgs theory on \({\mathbb{R}}^ 3\) (English)
0 references
1984
0 references
The author proves that in classical SU(2) Yang-Mills-Higgs theories on \(R^ 3\) with a Higgs field in the adjoint representation, an integer- valued monopole number (magnetic charge) is canonically defined for any finite-action \(L^ 2_{1,loc}\) configuration. In particular the result is true for smooth configurations. The monopole number is shown to decompose the configuration space into path components.
0 references
Yang-Mills-Higgs theories
0 references
magnetic charge
0 references
monopole number
0 references
0 references
0 references
0.9001563
0 references
0.8927702
0 references
0.89095336
0 references
0.89013076
0 references
0.8858078
0 references
0.8837446
0 references
0.88174176
0 references
0.8815159
0 references
0.88022846
0 references