On the adèle rings of radical extensions of the rationals (Q1060249)

From MaRDI portal





scientific article; zbMATH DE number 3906603
Language Label Description Also known as
English
On the adèle rings of radical extensions of the rationals
scientific article; zbMATH DE number 3906603

    Statements

    On the adèle rings of radical extensions of the rationals (English)
    0 references
    0 references
    0 references
    1985
    0 references
    The authors prove this theorem: Let \(n=2^ km\), \(a=2^ ta_ 1\), \(b\) be integers with \(X^ n-a\), \(X^ n-b\) irreducible over \(\mathbb Q\). Then the fields \(\mathbb Q({\root n\of a})\), \(\mathbb Q({\root n\of b})\) have isomorphic adèle rings if and only if one of the following holds: (i) \(ab^ i\in {\mathbb Q}^ n\) for some \(i\) with \((i,n)=1\), or (ii) \(8\mid n\) and \(ab^ i2^{n/2}\in {\mathbb Q}^ n\) for some \(i\) with \((i,n)=1\), and either \(a_ 1\equiv 7 \pmod 8\) or else \(a_ 1\equiv 1 \pmod {2^{r+3}}\), where \(2^ r\| (t,n)\) with \(r\leq k-2.\) It follows from a lemma of Iwasawa that the zeta-functions of the fields \(\mathbb Q({\root n\of a})\), \(\mathbb Q({\root n\of b})\) given in the theorem above are equal.
    0 references
    arithmetically equivalent fields
    0 references
    radical extensions of rationals
    0 references
    splitting of primes
    0 references
    adèle rings
    0 references
    zeta-functions
    0 references

    Identifiers