Eine Aussage zur \(L_{\infty}\)-Stabilität und zur genauen Konvergenzordnung der \(H^ 1_ 0\)-Projektionen (Q1064006)

From MaRDI portal





scientific article; zbMATH DE number 3919633
Language Label Description Also known as
English
Eine Aussage zur \(L_{\infty}\)-Stabilität und zur genauen Konvergenzordnung der \(H^ 1_ 0\)-Projektionen
scientific article; zbMATH DE number 3919633

    Statements

    Eine Aussage zur \(L_{\infty}\)-Stabilität und zur genauen Konvergenzordnung der \(H^ 1_ 0\)-Projektionen (English)
    0 references
    1984
    0 references
    The purpose of this paper is to study a question concerning the necessity of the log h-factor appearing in error estimates of linear finite element solutions. As main result it is shown by an example that the estimates: \(\| u-P_ hu\|_{\infty}\leq c | \log h| dist(u;S^ h_ 0)\), \(u\in C({\bar \Omega})\cap H^ 1_ 0(\Omega)\), \(\| u-P_ hu\|_{\infty}\leq ch^ 2 | \log h| | u|_{2,\infty}\) (for u with bounded second derivatives) are sharp in the very strong sense that in general they are no longer valid if \(| \log h|\) is replaced by a term o(\(| \log h|)\).
    0 references
    stability
    0 references
    exact order of convergence
    0 references
    error estimates
    0 references
    linear finite element spaces
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references