Eine Aussage zur \(L_{\infty}\)-Stabilität und zur genauen Konvergenzordnung der \(H^ 1_ 0\)-Projektionen (Q1064006)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Eine Aussage zur \(L_{\infty}\)-Stabilität und zur genauen Konvergenzordnung der \(H^ 1_ 0\)-Projektionen |
scientific article; zbMATH DE number 3919633
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Eine Aussage zur \(L_{\infty}\)-Stabilität und zur genauen Konvergenzordnung der \(H^ 1_ 0\)-Projektionen |
scientific article; zbMATH DE number 3919633 |
Statements
Eine Aussage zur \(L_{\infty}\)-Stabilität und zur genauen Konvergenzordnung der \(H^ 1_ 0\)-Projektionen (English)
0 references
1984
0 references
The purpose of this paper is to study a question concerning the necessity of the log h-factor appearing in error estimates of linear finite element solutions. As main result it is shown by an example that the estimates: \(\| u-P_ hu\|_{\infty}\leq c | \log h| dist(u;S^ h_ 0)\), \(u\in C({\bar \Omega})\cap H^ 1_ 0(\Omega)\), \(\| u-P_ hu\|_{\infty}\leq ch^ 2 | \log h| | u|_{2,\infty}\) (for u with bounded second derivatives) are sharp in the very strong sense that in general they are no longer valid if \(| \log h|\) is replaced by a term o(\(| \log h|)\).
0 references
stability
0 references
exact order of convergence
0 references
error estimates
0 references
linear finite element spaces
0 references
0 references
0 references