Konstruktion von Klassenkörpern und Potenzrestkriterien für quadratische Einheiten (Q1071807)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Konstruktion von Klassenkörpern und Potenzrestkriterien für quadratische Einheiten |
scientific article; zbMATH DE number 3939450
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Konstruktion von Klassenkörpern und Potenzrestkriterien für quadratische Einheiten |
scientific article; zbMATH DE number 3939450 |
Statements
Konstruktion von Klassenkörpern und Potenzrestkriterien für quadratische Einheiten (English)
0 references
1986
0 references
The author considers the quartic and octic residuacity properties of the fundamental unit \(\epsilon_ m\) of a quadratic field \({\mathbb{Q}}(\sqrt{m})\) modulo p in terms of the representability of p by quadratic forms. He comes up with ten criteria, which are too detailed to give here. The limitation is that there should not be too many components of order four in the construction of the ray class field modulo \(2^ s\) in \({\mathbb{Q}}(\sqrt{-m}).\) The author cites background material in his concurrent paper [J. Number Theory 22, 249-270 (1986; Zbl 0584.12005)]. He notes the direct generalization of results of \textit{E. Lehmer} [J. Reine Angew. Math. 268/269, 294-301 (1974; Zbl 0289.12007)] and the reviewer and \textit{G. Cooke} [Acta Arith. 30, 367-377 (1976; Zbl 0299.12004)].
0 references
quartic residuacity
0 references
higher residuacity
0 references
binary quadratic forms
0 references
octic residuacity
0 references
fundamental unit
0 references
quadratic field
0 references
ray class field
0 references
0 references
0 references
0.88883656
0 references
0.8805828
0 references
0.85717595
0 references
0.8431474
0 references
0.83881605
0 references