A basic statistical problem: Confidence interval for the Bernoulli parameter (Q1072294)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A basic statistical problem: Confidence interval for the Bernoulli parameter |
scientific article; zbMATH DE number 3942758
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A basic statistical problem: Confidence interval for the Bernoulli parameter |
scientific article; zbMATH DE number 3942758 |
Statements
A basic statistical problem: Confidence interval for the Bernoulli parameter (English)
0 references
1985
0 references
This paper summarizes and compares in a unified way 11 different methods (obtained through Neyman, Bayesian or fiducial approach) proposed in the literature for setting confidence intervals (CI) for the parameter \(\pi\in [0,1]\) of the Bernoulli distribution based on a random sample \(X_ 1,...,X_ n\) from this distribution, i.e., \(P(X_ i=1)=\pi =1- P(X_ i=0)\), \(1\leq i\leq n\). Based on this comparison, a practical procedure for obtaining a CI for \(\pi\) is proposed.
0 references
Neyman
0 references
fiducial approach
0 references
confidence intervals
0 references
Bernoulli distribution
0 references
comparison
0 references
0 references