On the Steinberg module, representations of the symmetric groups, and the Steenrod algebra (Q1076135)

From MaRDI portal





scientific article; zbMATH DE number 3953040
Language Label Description Also known as
English
On the Steinberg module, representations of the symmetric groups, and the Steenrod algebra
scientific article; zbMATH DE number 3953040

    Statements

    On the Steinberg module, representations of the symmetric groups, and the Steenrod algebra (English)
    0 references
    1986
    0 references
    Let \(A\) denote the mod \(p\) Steenrod algebra. Let \(B\) denote one of the subalgebras A(n) of \(A\) or \(P(n)\) of \(A/A\beta A\). \(B\) admits a left \(A\)-module structure extending its \(B\)-module structure. This result has independently been proved by the author [Topology 24, 227--246 (1985; Zbl 0568.55021)] and J. Smith. In the paper under review it is shown that for \(B=P(n)\) (or \(p=2\) and \(B=A(n))\) these two \(A\)-module structures are the same. The proof uses the fact that the Steinberg module is isomorphic to the Weyl module associated to the partition \(\Delta_ n=((p-1)(n-1),(p-1)(n-2),\ldots,p-1)\). Combining this Weyl module characterization of the Steinberg module with an unpublished result of S. Piddy, the author can deduce the following theorem of J. Smith: Let \(f\) denote the classical primitive idempotent corresponding to \(\Delta_ n\). Then \((\otimes^{(p-1)\binom{n}{2}}\mathbb Z_ n)f\) is a free \(P(n-2)\)-module on one generator.
    0 references
    mod p Steenrod algebra
    0 references
    Steinberg module
    0 references
    Weyl module
    0 references
    partition
    0 references
    primitive idempotent
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references