Ergänzung ''Über rationale Darstellungen von Kettengeometrien als projektive Varietäten''. (Complement to ''On rational representations of chain geometries as projective varieties'') (Q1081113)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ergänzung Über rationale Darstellungen von Kettengeometrien als projektive Varietäten. (Complement to On rational representations of chain geometries as projective varieties) |
scientific article; zbMATH DE number 3969509
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ergänzung ''Über rationale Darstellungen von Kettengeometrien als projektive Varietäten''. (Complement to ''On rational representations of chain geometries as projective varieties'') |
scientific article; zbMATH DE number 3969509 |
Statements
Ergänzung ''Über rationale Darstellungen von Kettengeometrien als projektive Varietäten''. (Complement to ''On rational representations of chain geometries as projective varieties'') (English)
0 references
1987
0 references
In his paper in Geom. Dedicata 19, 287-293 (1985; Zbl 0573.51002) the author gave a very general construction for ''rational representations of chain geometries'' for a finite-dimensional K-algebra \({\mathfrak R}\), where the point set is a quasiprojective variety and the chains are smooth rational curves on it all of the same order r. In this construction a Grassmann map is followed by an appropriate projection. Here the author proves the following theorem: Let \({\mathfrak V}\) be the point set in a rational representation of the chain geometry \(\Sigma\) (K,\({\mathfrak R})\). Then \({\mathfrak V}\) is a projective variety if and only if \({\mathfrak R}\) is semisimple.
0 references
rational representations of chain geometries
0 references
projective variety
0 references
0.97991216
0 references
0.86573386
0 references
0.8571547
0 references
0.85604024
0 references
0.85042703
0 references
0 references
0.8497148
0 references
0.8484432
0 references
0.84825194
0 references