Über die Identität von MacWilliams für die Gewichtsfunktion von Codes (Q1085138)

From MaRDI portal





scientific article; zbMATH DE number 3981084
Language Label Description Also known as
English
Über die Identität von MacWilliams für die Gewichtsfunktion von Codes
scientific article; zbMATH DE number 3981084

    Statements

    Über die Identität von MacWilliams für die Gewichtsfunktion von Codes (English)
    0 references
    0 references
    1987
    0 references
    The identity of MacWilliams is established for linear codes with scalars out of the ring of integers modulo m. The weight enumerator, which is introduced in this paper, is a homogeneous polynomial in d independents, where d is the number of divisors of m. The connection between the weigth enumerators of a code and its dual (''Identity of MacWilliams'') is then described by an integral quadratic matrix \(T_ m\) of size d, involving the Möbius function. If m is a product of two factors a and b, which are relatively prime, then \(T_ m=T_ a\otimes T_ b\), and if m is a prime power, then \(T_ m\) can be determined by induction on the exponent. In order to motivate these investigations it is shown that a symmetric \((v,n+\lambda,\lambda)\) design with \(n=mm'\) and \(g.c.d.(m,m')=g.c.d.(m,\lambda)=1\) has a selfdual code of length \(v+1\) over the ring of integers modulo m.
    0 references
    identity of MacWilliams
    0 references
    weight enumerator
    0 references
    Möbius function
    0 references
    selfdual code
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references